

Motors

- Advantages
 - Low Initial Cost \$/Hp
 - Simple & Efficient Operation
 - Compact Size cubic inches/Hp
 - Long Life 30,000 to 50,000 hours
 - Low Noise
 - No Exhaust Emissions
 - Withstand high temporary overloads
 - Automatic/Remote Start & Control
- Disadvantages
 - Portability
 - Speed Control
 - No Demand Charge

Bearings

- Sleeve Bearings
 - Standard on most motors
 - Quiet
 - Horizontal shafts only
 - Oil lubricated
- Ball (Roller) Bearings
 - Support shaft in any position
 - Grease lubricated
 - Many come sealed requiring no maintenance

Other Parts Conduit Box Point of connection of electrical power to the motor's stator windings. Eye Bolt Used to lift heavy motors with a hoist or crane to prevent motor damage.

Motor Speed

- Synchronous Speed
 - Speed the motor's magnetic field rotates.
 - Theoretical speed with not torque or friction.
- Rated Speed
 - Speed the motor operates when fully loaded.
 - Actual speed at full load when supplied rated voltage.

Watt's Law

- Input Power
- Single Phase
 - Watts = Volts X Amps X p.f.
- Three Phase
 - Watts = Avg Volts X Avg Amps X p.f. X 1.74

Example

- Is a 1 Hp 1-phase motor driving a fan overloaded?
 - Voltage = 123 volts
 - Current = 9 amps
 - p.f. = 78%
- Watts = Volts X Amps X p.f.
 Watts = 123 volts X 9 amps X 0.78 = 863.5 Watts 864 Watts / 746 Watts/Hp = 1.16 Hp
- Is the motor overloaded?

Electrical = Input

- We measured Input
- Motors are rated as Output
- Difference? – Efficiency
- If the motor is 75% efficient, is it overloaded?
- Eff = Output / Input
- Output = Eff X Input 0.75 X 1.16 Hp = 0.87 Hp
- The motor is NOT overloaded

Example #2

- Is this 10 Hp, 3-phase motor overloaded?
 - Voltages = 455, 458, and 461 volts
 - Currents = 14.1, 14.0 and 13.9 amps
 - P.f. = 82%
- Watts = Volts_{avg} X Amps_{avg} X p.f. X 1.74 Watts = 458v X 14a X 0.82 X 1.74 = 9148.6 Watts 9148.6 Watts / 746 Watts/Hp = 12.26 Hp
- Is the motor overloaded?

Example #2

- We measured Input
- Motor is rated as Output
- Difference? – Efficiency
- If the motor is 90% efficient, is it overloaded?
- Eff = Output / Input
- Output = Eff X Input 0.90 X 12.26 Hp = 11.0 Hp
- The motor IS overloaded!
- How bad is the overload?

Design Type E

- Newest NEMA Category
- Newer ultra-high efficiency motors
 - Higher Starting Torque
 - Higher Starting Current (8-12 times Running)
 - Ultra Low Slip (Higher Rated Speed)

Single Phase Induction Motors

- Are not "self starting"
 - Require a starting mechanism.
- The name generally describes its "starting mechanism".
 - Split Phase
 - Capacitor Run
 - Capacitor Start
 - Capacitor Start-Capacitor Run
 - Shaded Pole
 - Synchronous
 - Universal

Capacitor Start Motor

- Larger single phase motors up to about 10 Hp.
- A split phase motor with the addition of a capacitor in the starting winding.
- Capacitor sized for high starting torque.

Capacitor Start-Capacitor Run

- Both starting and running characteristics are optimized.
 - High starting torque
 - Low starting current
 - Highest cost
- For hard starting loads like compressors and pumps.
- Up to 10 Hp or higher is some situations.

